Robo-Dopamine: General Process Reward Modeling for High-Precision Robotic Manipulation
作者: Huajie Tan, Sixiang Chen, Yijie Xu, Zixiao Wang, Yuheng Ji, Cheng Chi, Yaoxu Lyu, Zhongxia Zhao, Xiansheng Chen, Peterson Co, Shaoxuan Xie, Guocai Yao, Pengwei Wang, Zhongyuan Wang, Shanghang Zhang
分类: cs.RO
发布日期: 2025-12-29
备注: 27 pages, 11 figures
💡 一句话要点
提出Dopamine-Reward以解决机器人操作中的奖励函数设计问题
🎯 匹配领域: 支柱一:机器人控制 (Robot Control) 支柱二:RL算法与架构 (RL & Architecture)
关键词: 过程奖励模型 强化学习 机器人操作 多视角输入 奖励塑造 策略学习 深度学习
📋 核心要点
- 现有的过程奖励模型在机器人操作中面临奖励评估不可靠和理论基础不扎实的挑战。
- 论文提出Dopamine-Reward,通过多视角输入学习具有步态意识的通用奖励模型,解决了现有方法的不足。
- 实验表明,GRM在奖励评估中达到了最先进的准确性,Dopamine-RL在策略学习效率上显著提升。
📝 摘要(中文)
在将强化学习应用于现实机器人时,设计有效的奖励函数是主要障碍。尽管基于学习的过程奖励模型(PRMs)是一种有前景的方向,但它们通常受到奖励模型缺乏步态意识和依赖单视角感知的限制,导致对细粒度操作进展的评估不可靠。此外,奖励塑造程序在理论上不够严谨,常常诱导出误导性的语义陷阱。为了解决这些问题,本文提出了一种新颖的奖励建模方法Dopamine-Reward,旨在从多视角输入中学习通用的、具有步态意识的过程奖励模型。核心是我们的通用奖励模型(GRM),其训练基于超过3400小时的数据集,利用逐步奖励离散化和多视角奖励融合来克服感知限制。实验结果表明,GRM在奖励评估中达到了最先进的准确性,而基于GRM的Dopamine-RL显著提高了策略学习效率。
🔬 方法详解
问题定义:本论文旨在解决在现实机器人操作中,现有强化学习方法在奖励函数设计上的不足,尤其是奖励模型缺乏步态意识和依赖单一视角感知的问题。
核心思路:提出Dopamine-Reward方法,通过多视角输入来学习通用的、具有步态意识的过程奖励模型,从而提高奖励评估的可靠性和有效性。
技术框架:整体架构包括通用奖励模型(GRM)和Dopamine-RL框架。GRM通过逐步奖励离散化和多视角奖励融合来实现结构化理解,而Dopamine-RL则采用理论上严谨的策略不变奖励塑造方法。
关键创新:最重要的技术创新在于引入了逐步奖励离散化和多视角奖励融合,克服了传统方法的感知限制,并通过理论上严谨的奖励塑造避免了语义陷阱。
关键设计:在GRM中,使用了大量的训练数据(3400小时以上),并设计了适当的损失函数和网络结构,以确保模型的准确性和泛化能力。
🖼️ 关键图片
📊 实验亮点
实验结果显示,GRM在奖励评估中达到了最先进的准确性,Dopamine-RL在策略学习效率上显著提升。例如,在适应新任务时,Dopamine-RL能够在仅150次在线回合内将成功率从接近零提升至95%,展现出强大的任务泛化能力。
🎯 应用场景
该研究的潜在应用领域包括工业机器人、服务机器人和自动化系统等,能够显著提升机器人在复杂环境中的操作精度和效率。未来,Dopamine-Reward方法可能会推动更广泛的智能机器人技术的发展,使其在多样化任务中表现出更强的适应性和灵活性。
📄 摘要(原文)
The primary obstacle for applying reinforcement learning (RL) to real-world robotics is the design of effective reward functions. While recently learning-based Process Reward Models (PRMs) are a promising direction, they are often hindered by two fundamental limitations: their reward models lack step-aware understanding and rely on single-view perception, leading to unreliable assessments of fine-grained manipulation progress; and their reward shaping procedures are theoretically unsound, often inducing a semantic trap that misguides policy optimization. To address these, we introduce Dopamine-Reward, a novel reward modeling method for learning a general-purpose, step-aware process reward model from multi-view inputs. At its core is our General Reward Model (GRM), trained on a vast 3,400+ hour dataset, which leverages Step-wise Reward Discretization for structural understanding and Multi-Perspective Reward Fusion to overcome perceptual limitations. Building upon Dopamine-Reward, we propose Dopamine-RL, a robust policy learning framework that employs a theoretically-sound Policy-Invariant Reward Shaping method, which enables the agent to leverage dense rewards for efficient self-improvement without altering the optimal policy, thereby fundamentally avoiding the semantic trap. Extensive experiments across diverse simulated and real-world tasks validate our approach. GRM achieves state-of-the-art accuracy in reward assessment, and Dopamine-RL built on GRM significantly improves policy learning efficiency. For instance, after GRM is adapted to a new task in a one-shot manner from a single expert trajectory, the resulting reward model enables Dopamine-RL to improve the policy from near-zero to 95% success with only 150 online rollouts (approximately 1 hour of real robot interaction), while retaining strong generalization across tasks. Project website: https://robo-dopamine.github.io