A bilevel optimal motion planning (BOMP) model with application to autonomous parking

📄 arXiv: 2312.00314v1 📥 PDF

作者: Shenglei Shi, Youlun Xiong, Jiankui Chen, Caihua Xiong

分类: cs.RO

发布日期: 2023-12-01


💡 一句话要点

提出双层最优运动规划模型以解决自主停车问题

🎯 匹配领域: 支柱一:机器人控制 (Robot Control)

关键词: 自主停车 运动规划 最优控制 线性规划 非线性动力学 碰撞避免 机器人导航

📋 核心要点

  1. 现有的自主停车方法在处理车辆非线性动力学和几何碰撞约束时存在局限性,难以实现高效的运动规划。
  2. 论文提出的BOMP模型通过将运动规划分为上下两层,利用线性规划解决几何约束,从而优化车辆的运动轨迹。
  3. 实验结果显示,BOMP模型在Turtlebot3上的应用验证了其有效性,计算速度较传统方法显著提升,达到了近200倍的速度提升。

📝 摘要(中文)

本文提出了一种双层最优运动规划(BOMP)模型,用于自主停车。该模型将运动规划视为一个最优控制问题,其中上层设计考虑车辆的非线性动力学,下层则处理几何无碰撞约束。BOMP模型的显著特点是下层为线性规划问题,作为上层问题的约束。传统的最优控制方法无法直接解决BOMP问题,因此采用了修改的近似Karush-Kuhn-Tucker理论来生成一般的非线性最优控制问题,并通过伪谱最优控制方法求解。实验结果表明,该模型在计算速度上比基于区域标准的碰撞避免方法提高了近两个数量级。

🔬 方法详解

问题定义:本文旨在解决自主停车中的运动规划问题,现有方法在处理车辆的非线性动力学与几何碰撞约束时效率较低,难以满足实际应用需求。

核心思路:BOMP模型将运动规划视为一个双层最优控制问题,上层关注车辆的动力学特性,下层则通过线性规划处理碰撞约束,从而实现高效的轨迹优化。

技术框架:整体架构分为两个阶段:初始阶段使用修改的$J_2$函数寻找初始无碰撞轨迹,最终阶段采用基于活跃点的修改$J_2$函数(APMJ)来优化轨迹。

关键创新:BOMP模型的创新在于将线性规划嵌入到非线性最优控制问题中,形成了新的求解框架,显著提高了计算效率。

关键设计:在模型中,修改的$J_2$函数用于计算凸多面体之间的距离,能够更精确地近似车辆形状,同时通过减少变量数量和时间复杂度来优化计算过程。

📊 实验亮点

实验结果表明,BOMP模型在Turtlebot3上的应用实现了计算速度的显著提升,较基于区域标准的碰撞避免方法提高了近200倍,验证了模型的有效性和实用性。

🎯 应用场景

该研究的潜在应用领域包括自动驾驶汽车的自主停车系统、智能交通管理以及机器人导航等。通过提高运动规划的效率和精度,BOMP模型能够在实际场景中实现更安全、更高效的自动停车解决方案,具有重要的实际价值和广泛的应用前景。

📄 摘要(原文)

In this paper, we present a bilevel optimal motion planning (BOMP) model for autonomous parking. The BOMP model treats motion planning as an optimal control problem, in which the upper level is designed for vehicle nonlinear dynamics, and the lower level is for geometry collision-free constraints. The significant feature of the BOMP model is that the lower level is a linear programming problem that serves as a constraint for the upper-level problem. That is, an optimal control problem contains an embedded optimization problem as constraints. Traditional optimal control methods cannot solve the BOMP problem directly. Therefore, the modified approximate Karush-Kuhn-Tucker theory is applied to generate a general nonlinear optimal control problem. Then the pseudospectral optimal control method solves the converted problem. Particularly, the lower level is the $J_2$-function that acts as a distance function between convex polyhedron objects. Polyhedrons can approximate vehicles in higher precision than spheres or ellipsoids. Besides, the modified $J_2$-function (MJ) and the active-points based modified $J_2$-function (APMJ) are proposed to reduce the variables number and time complexity. As a result, an iteirative two-stage BOMP algorithm for autonomous parking concerning dynamical feasibility and collision-free property is proposed. The MJ function is used in the initial stage to find an initial collision-free approximate optimal trajectory and the active points, then the APMJ function in the final stage finds out the optimal trajectory. Simulation results and experiment on Turtlebot3 validate the BOMP model, and demonstrate that the computation speed increases almost two orders of magnitude compared with the area criterion based collision avoidance method.