KIPPO: Koopman-Inspired Proximal Policy Optimization
作者: Andrei Cozma, Landon Harris, Hairong Qi
分类: cs.LG, cs.AI
发布日期: 2025-05-20
备注: Accepted for IJCAI 2025. This arXiv submission is the full version of the conference paper, including the appendix and supplementary material omitted from the IJCAI proceedings
💡 一句话要点
提出KIPPO以解决复杂动态环境中的策略优化问题
🎯 匹配领域: 支柱二:RL算法与架构 (RL & Architecture)
关键词: 强化学习 策略优化 Koopman算子 非线性动态 控制系统 PPO 稳定性 性能提升
📋 核心要点
- 现有的策略梯度方法在复杂非线性动态环境中面临高方差和不稳定学习的问题。
- KIPPO通过引入Koopman近似辅助网络,学习系统动态的线性表示,增强策略学习的稳定性和有效性。
- 实验结果显示,KIPPO在多种连续控制任务上性能提升6-60%,方差降低至91%。
📝 摘要(中文)
强化学习(RL)在多个领域取得了显著进展,策略梯度方法如近端策略优化(PPO)因其在性能、训练稳定性和计算效率之间的平衡而受到广泛关注。然而,在复杂和非线性动态环境中开发有效的控制策略仍然是一个挑战。梯度估计的高方差和非凸优化景观常导致学习轨迹的不稳定。本文提出了KIPPO(基于Koopman的近端策略优化),该方法学习系统动态的近似线性潜在空间表示,同时保留有效策略学习所需的基本特征。通过引入Koopman近似辅助网络,KIPPO可以在不改变核心策略或价值函数架构的情况下,添加到基线策略优化算法中。实验结果表明,在各种连续控制任务上,KIPPO相较于PPO基线性能提升了6-60%,并将方差降低了多达91%。
🔬 方法详解
问题定义:本文旨在解决在复杂非线性动态环境中,现有策略梯度方法(如PPO)面临的高方差和不稳定学习轨迹的问题。
核心思路:KIPPO通过引入Koopman近似辅助网络,学习系统动态的近似线性表示,从而简化策略学习过程,提高学习的稳定性和效率。
技术框架:KIPPO的整体架构包括基线PPO算法和Koopman近似辅助网络。该辅助网络通过捕捉系统动态的线性特征,增强了策略优化的过程。
关键创新:KIPPO的主要创新在于将Koopman算子理论应用于策略优化,提供了一种新的视角来处理非线性动态系统,显著提高了学习的稳定性和性能。
关键设计:KIPPO的设计包括优化损失函数以平衡策略更新和动态学习,网络结构上保留了PPO的核心架构,同时引入了辅助网络以捕捉系统的线性特征。具体参数设置和网络层数等细节在实验中进行了优化。
📊 实验亮点
在实验中,KIPPO相较于PPO基线在性能上提升了6-60%,并且在方差方面降低了多达91%。这些结果表明,KIPPO在处理复杂控制任务时具有显著的优势,验证了其有效性和实用性。
🎯 应用场景
KIPPO的研究成果在机器人控制、自动驾驶、智能制造等领域具有广泛的应用潜力。通过提高策略学习的稳定性和效率,KIPPO能够帮助开发更为复杂和动态的控制系统,推动智能系统的实际应用和发展。
📄 摘要(原文)
Reinforcement Learning (RL) has made significant strides in various domains, and policy gradient methods like Proximal Policy Optimization (PPO) have gained popularity due to their balance in performance, training stability, and computational efficiency. These methods directly optimize policies through gradient-based updates. However, developing effective control policies for environments with complex and non-linear dynamics remains a challenge. High variance in gradient estimates and non-convex optimization landscapes often lead to unstable learning trajectories. Koopman Operator Theory has emerged as a powerful framework for studying non-linear systems through an infinite-dimensional linear operator that acts on a higher-dimensional space of measurement functions. In contrast with their non-linear counterparts, linear systems are simpler, more predictable, and easier to analyze. In this paper, we present Koopman-Inspired Proximal Policy Optimization (KIPPO), which learns an approximately linear latent-space representation of the underlying system's dynamics while retaining essential features for effective policy learning. This is achieved through a Koopman-approximation auxiliary network that can be added to the baseline policy optimization algorithms without altering the architecture of the core policy or value function. Extensive experimental results demonstrate consistent improvements over the PPO baseline with 6-60% increased performance while reducing variability by up to 91% when evaluated on various continuous control tasks.