Ergodic Generative Flows

📄 arXiv: 2505.03561v1 📥 PDF

作者: Leo Maxime Brunswic, Mateo Clemente, Rui Heng Yang, Adam Sigal, Amir Rasouli, Yinchuan Li

分类: cs.LG, cs.AI, math.DG, math.DS

发布日期: 2025-05-06

备注: 20 pages, 5 figures, 1 table, accepted at ICML 2025


💡 一句话要点

提出厄尔戈迪克生成流以解决生成流网络训练挑战

🎯 匹配领域: 支柱二:RL算法与架构 (RL & Architecture)

关键词: 生成流网络 模仿学习 流匹配损失 厄尔戈迪克性 强化学习 交叉熵 微分同胚 训练效率

📋 核心要点

  1. 现有生成流网络在连续设置和模仿学习中训练面临流匹配损失不可处理、非无环训练测试有限等挑战。
  2. 提出厄尔戈迪克生成流,通过利用厄尔戈迪克性构建简单生成流,并引入KL-weakFM损失以简化模仿学习训练。
  3. 在玩具2D任务和NASA数据集上进行评估,展示了EGFs在流匹配损失处理和模仿学习中的有效性。

📝 摘要(中文)

生成流网络(GFNs)最初是在有向无环图上引入的,用于从未归一化的分布密度中采样。尽管近期的研究扩展了生成方法的理论框架,提升了灵活性和应用范围,但在连续设置和模仿学习(IL)中训练GFNs仍面临诸多挑战,包括流匹配损失的不可处理性、非无环训练的有限测试以及模仿学习中需要单独的奖励模型。本文提出了一类称为厄尔戈迪克生成流(EGFs)的生成流,以解决上述问题。我们利用厄尔戈迪克性构建了简单的生成流,具有有限的全局定义变换(微分同胚),并提供了通用性保证和可处理的流匹配损失(FM损失)。此外,我们引入了一种新的损失函数,结合了弱流匹配控制的交叉熵,称为KL-weakFM损失,旨在无需单独奖励模型的情况下进行IL训练。我们在玩具2D任务和NASA的真实世界数据集上评估了IL-EGFs,并进行了玩具2D强化学习实验。

🔬 方法详解

问题定义:本文旨在解决生成流网络在连续设置和模仿学习中的训练挑战,特别是流匹配损失的不可处理性和对单独奖励模型的依赖问题。

核心思路:通过引入厄尔戈迪克生成流(EGFs),利用厄尔戈迪克性构建简单的生成流,确保全局定义的变换具有通用性,并设计KL-weakFM损失以简化模仿学习训练。

技术框架:EGFs的整体架构包括两个主要模块:一是基于厄尔戈迪克性的生成流构建,二是KL-weakFM损失的设计与实现。该框架允许在无环图上进行有效的流匹配。

关键创新:最重要的技术创新在于引入了KL-weakFM损失,这一损失函数结合了交叉熵和弱流匹配控制,能够在没有单独奖励模型的情况下进行模仿学习训练,显著提升了训练效率。

关键设计:在损失函数设计上,KL-weakFM损失通过弱流匹配控制来优化训练过程,确保了在复杂任务中的有效性。此外,生成流的微分同胚结构保证了变换的可逆性和稳定性。

📊 实验亮点

实验结果表明,使用KL-weakFM损失的IL-EGFs在玩具2D任务和NASA数据集上表现优异,显著提高了模仿学习的训练效率,且在强化学习实验中也取得了良好的效果,验证了方法的有效性。

🎯 应用场景

该研究的潜在应用领域包括机器人控制、自动驾驶、游戏AI等,尤其是在需要模仿学习的场景中,EGFs能够有效提升训练效率和性能。未来,EGFs有望在更复杂的任务中展现出更强的适应性和灵活性。

📄 摘要(原文)

Generative Flow Networks (GFNs) were initially introduced on directed acyclic graphs to sample from an unnormalized distribution density. Recent works have extended the theoretical framework for generative methods allowing more flexibility and enhancing application range. However, many challenges remain in training GFNs in continuous settings and for imitation learning (IL), including intractability of flow-matching loss, limited tests of non-acyclic training, and the need for a separate reward model in imitation learning. The present work proposes a family of generative flows called Ergodic Generative Flows (EGFs) which are used to address the aforementioned issues. First, we leverage ergodicity to build simple generative flows with finitely many globally defined transformations (diffeomorphisms) with universality guarantees and tractable flow-matching loss (FM loss). Second, we introduce a new loss involving cross-entropy coupled to weak flow-matching control, coined KL-weakFM loss. It is designed for IL training without a separate reward model. We evaluate IL-EGFs on toy 2D tasks and real-world datasets from NASA on the sphere, using the KL-weakFM loss. Additionally, we conduct toy 2D reinforcement learning experiments with a target reward, using the FM loss.