AIM: Adaptive Intra-Network Modulation for Balanced Multimodal Learning

📄 arXiv: 2508.19769v3 📥 PDF

作者: Shu Shen, C. L. Philip Chen, Tong Zhang

分类: cs.CV

发布日期: 2025-08-27 (更新: 2025-11-03)

备注: 13pages,7 figures


💡 一句话要点

提出自适应网络内调制以解决多模态学习不平衡问题

🎯 匹配领域: 支柱九:具身大模型 (Embodied Foundation Models)

关键词: 多模态学习 自适应调制 优化偏差 辅助模块 联合训练 深度学习 机器学习

📋 核心要点

  1. 现有多模态学习方法在处理模态不平衡时,往往抑制主导模态的学习,导致整体性能下降。
  2. 本文提出自适应网络内调制(AIM),通过解耦主导模态的欠优化参数,促进与弱模态的联合训练。
  3. 实验结果显示,AIM在多个基准测试中优于现有方法,展现出良好的泛化能力。

📝 摘要(中文)

多模态学习显著提升了机器学习性能,但仍面临诸多挑战,尤其是多模态不平衡问题。现有方法通常通过调制每种模态的学习来缓解这一问题,但往往抑制了主导模态的学习,影响整体性能。为此,本文提出自适应网络内调制(AIM),首次在不抑制主导或弱模态的情况下实现平衡的多模态学习。AIM通过将主导模态的欠优化参数解耦为辅助模块,并与弱模态共同训练,避免了对弱模态的压制,同时针对欠优化参数进行有针对性的优化。实验结果表明,AIM在多个基准测试中超越了现有的多模态不平衡学习方法,并在不同的网络结构、融合策略和优化器上展现出强大的泛化能力。

🔬 方法详解

问题定义:本文旨在解决多模态学习中的不平衡问题,现有方法往往通过抑制主导模态的学习来促进弱模态,导致整体性能下降。

核心思路:AIM通过识别网络内部的优化偏差,解耦主导模态的欠优化参数,形成辅助模块,与弱模态共同训练,从而实现平衡的多模态学习。

技术框架:AIM的整体架构包括两个主要模块:一是对主导模态的欠优化参数进行解耦,形成辅助模块;二是根据网络深度自适应调整调制强度,以优化各模态的学习效果。

关键创新:AIM的核心创新在于首次实现了在不抑制主导模态的情况下,促进弱模态的学习,解决了以往方法中的优化偏差问题。

关键设计:在设计上,AIM采用了自适应调制机制,根据不同深度的模态不平衡程度动态调整调制强度,确保各模态的学习效果最大化。

📊 实验亮点

实验结果表明,AIM在多个基准测试中超越了现有最先进的多模态不平衡学习方法,具体提升幅度达到X%(具体数据待补充),并在不同的网络结构和优化器上展现出强大的泛化能力。

🎯 应用场景

该研究的潜在应用领域包括多模态数据分析、智能监控、医疗影像处理等。通过实现平衡的多模态学习,AIM可以提升系统在复杂场景下的表现,具有重要的实际价值和广泛的应用前景。

📄 摘要(原文)

Multimodal learning has significantly enhanced machine learning performance but still faces numerous challenges and limitations. Imbalanced multimodal learning is one of the problems extensively studied in recent works and is typically mitigated by modulating the learning of each modality. However, we find that these methods typically hinder the dominant modality's learning to promote weaker modalities, which affects overall multimodal performance. We analyze the cause of this issue and highlight a commonly overlooked problem: optimization bias within networks. To address this, we propose Adaptive Intra-Network Modulation (AIM) to improve balanced modality learning. AIM accounts for differences in optimization state across parameters and depths within the network during modulation, achieving balanced multimodal learning without hindering either dominant or weak modalities for the first time. Specifically, AIM decouples the dominant modality's under-optimized parameters into Auxiliary Blocks and encourages reliance on these performance-degraded blocks for joint training with weaker modalities. This approach effectively prevents suppression of weaker modalities while enabling targeted optimization of under-optimized parameters to improve the dominant modality. Additionally, AIM assesses modality imbalance level across network depths and adaptively adjusts modulation strength at each depth. Experimental results demonstrate that AIM outperforms state-of-the-art imbalanced modality learning methods across multiple benchmarks and exhibits strong generalizability across different backbones, fusion strategies, and optimizers.