SPAZER: Spatial-Semantic Progressive Reasoning Agent for Zero-shot 3D Visual Grounding
作者: Zhao Jin, Rong-Cheng Tu, Jingyi Liao, Wenhao Sun, Xiao Luo, Shunyu Liu, Dacheng Tao
分类: cs.CV
发布日期: 2025-06-27
💡 一句话要点
提出SPAZER以解决零-shot 3D视觉定位问题
🎯 匹配领域: 支柱九:具身大模型 (Embodied Foundation Models)
关键词: 3D视觉定位 零-shot学习 多模态推理 空间理解 语义理解 进阶推理 视觉语言模型 深度学习
📋 核心要点
- 现有的零-shot 3D视觉定位方法往往只关注空间或语义理解,导致在复杂场景中的效果不佳。
- SPAZER通过结合空间和语义推理,采用进阶推理框架,首先进行全局场景分析并生成3D渲染。
- 在ScanRefer和Nr3D基准测试中,SPAZER的准确率分别提升了9.0%和10.9%,显著优于之前的最先进方法。
📝 摘要(中文)
3D视觉定位(3DVG)旨在根据自然语言查询在3D场景中定位目标对象。为减少对昂贵3D训练数据的依赖,近期研究探索了通过预训练的语言模型和视觉语言模型实现零-shot 3DVG。然而,现有方法往往侧重于空间或语义理解,限制了其在复杂现实应用中的有效性。本文提出SPAZER,一个结合空间和语义理解的进阶推理框架,能够在未使用3D标注数据的情况下实现稳健的零-shot定位。实验结果表明,SPAZER在ScanRefer和Nr3D基准测试中显著超越了现有的零-shot方法,准确率提升分别达到9.0%和10.9%。
🔬 方法详解
问题定义:本文旨在解决零-shot 3D视觉定位中的空间与语义理解不足的问题。现有方法往往在复杂场景中表现不佳,无法有效结合3D和2D信息。
核心思路:SPAZER通过结合空间和语义推理,采用进阶推理框架,首先进行全局场景分析并生成3D渲染,以实现更准确的目标定位。
技术框架:SPAZER的整体架构包括三个主要模块:全局场景分析、锚点引导候选筛选和3D-2D联合决策。首先,系统从最佳视角生成3D渲染,然后进行粗略定位,最后结合相关的2D图像进行精确匹配。
关键创新:SPAZER的创新在于其能够无缝结合空间和语义推理,形成一个统一的推理框架,克服了现有方法的局限性。
关键设计:在设计中,SPAZER使用了锚点引导的候选筛选机制,并通过检索相关的2D图像进行3D-2D联合决策,确保了高效的目标匹配。
📊 实验亮点
SPAZER在ScanRefer和Nr3D基准测试中表现出色,准确率分别提升了9.0%和10.9%,显著超越了现有的零-shot方法,展示了其在复杂场景中的有效性和鲁棒性。
🎯 应用场景
SPAZER的研究成果在智能机器人、增强现实和自动驾驶等领域具有广泛的应用潜力。通过实现高效的3D视觉定位,SPAZER能够提升机器对复杂环境的理解能力,推动相关技术的进步与应用落地。
📄 摘要(原文)
3D Visual Grounding (3DVG) aims to localize target objects within a 3D scene based on natural language queries. To alleviate the reliance on costly 3D training data, recent studies have explored zero-shot 3DVG by leveraging the extensive knowledge and powerful reasoning capabilities of pre-trained LLMs and VLMs. However, existing paradigms tend to emphasize either spatial (3D-based) or semantic (2D-based) understanding, limiting their effectiveness in complex real-world applications. In this work, we introduce SPAZER - a VLM-driven agent that combines both modalities in a progressive reasoning framework. It first holistically analyzes the scene and produces a 3D rendering from the optimal viewpoint. Based on this, anchor-guided candidate screening is conducted to perform a coarse-level localization of potential objects. Furthermore, leveraging retrieved relevant 2D camera images, 3D-2D joint decision-making is efficiently performed to determine the best-matching object. By bridging spatial and semantic reasoning neural streams, SPAZER achieves robust zero-shot grounding without training on 3D-labeled data. Extensive experiments on ScanRefer and Nr3D benchmarks demonstrate that SPAZER significantly outperforms previous state-of-the-art zero-shot methods, achieving notable gains of 9.0% and 10.9% in accuracy.