Physics-Driven Local-Whole Elastic Deformation Modeling for Point Cloud Representation Learning

📄 arXiv: 2505.13812v2 📥 PDF

作者: Zhongyu Chen, Rong Zhao, Xie Han, Xindong Guo, Song Wang, Zherui Qiao

分类: cs.CV

发布日期: 2025-05-20 (更新: 2025-09-10)


💡 一句话要点

提出物理驱动的局部-整体弹性变形建模以提升点云表示学习

🎯 匹配领域: 支柱二:RL算法与架构 (RL & Architecture)

关键词: 点云表示 物理驱动 弹性变形 几何建模 深度学习 结构关系 局部特征 数据驱动

📋 核心要点

  1. 现有点云表示学习方法主要依赖数据驱动策略,忽视了局部信息与整体结构的关系,导致表示准确性不足。
  2. 本文提出了一种结合物理驱动机制的双任务编码器-解码器框架,以学习点云中的细粒度特征并建模局部与整体的结构关系。
  3. 实验结果显示,所提方法在物体分类和分割任务中表现优异,相较于现有方法有显著提升。

📝 摘要(中文)

现有的点云表示学习方法主要依赖数据驱动策略,从大量散乱数据中提取几何信息。然而,大多数方法仅关注点云的空间分布特征,忽视了局部信息与整体结构之间的关系,限制了点云表示的准确性。局部信息反映了物体的细微变化,而整体结构则由这些局部特征的相互作用和组合决定。本文引入物理驱动机制,以有效弥补数据驱动方法在结构建模中的局限性,显著增强点云表示在理解和识别等下游任务中的泛化能力和可解释性。我们设计了一个双任务编码器-解码器框架,结合了数据驱动隐式场的几何建模能力与物理驱动的弹性变形。实验结果表明,我们的方法在物体分类和分割任务中优于现有方法,展示了其有效性。

🔬 方法详解

问题定义:本文旨在解决现有点云表示学习方法对局部信息与整体结构关系的忽视,导致的表示准确性不足的问题。

核心思路:通过引入物理驱动机制,结合数据驱动方法,学习点云的细粒度特征,并建模局部区域与整体形状之间的关系。

技术框架:整体架构为双任务编码器-解码器框架,包含数据驱动隐式场的几何建模模块和物理驱动的弹性变形模块,利用物理基础损失函数指导模型学习。

关键创新:最重要的创新在于将物理驱动机制与数据驱动方法相结合,显著提升了点云表示的泛化能力和可解释性,区别于传统方法单一依赖数据驱动。

关键设计:采用了物理基础损失函数来预测局部变形,明确捕捉局部结构变化与整体形状变化之间的对应关系,确保模型在学习过程中能够有效整合局部与整体信息。

📊 实验亮点

实验结果表明,所提方法在物体分类和分割任务中相较于现有方法有显著提升,具体表现为在分类任务中准确率提高了X%,在分割任务中IoU指标提升了Y%。

🎯 应用场景

该研究在计算机视觉、机器人和自动驾驶等领域具有广泛的应用潜力。通过提升点云表示的准确性和可解释性,可以改善物体识别、场景理解和环境建模等任务的性能,推动智能系统的进一步发展。

📄 摘要(原文)

Existing point cloud representation learning methods primarily rely on data-driven strategies to extract geometric information from large amounts of scattered data. However, most methods focus solely on the spatial distribution features of point clouds while overlooking the relationship between local information and the whole structure, which limits the accuracy of point cloud representation. Local information reflect the fine-grained variations of an object, while the whole structure is determined by the interaction and combination of these local features, collectively defining the object's shape. In real-world, objects undergo deformation under external forces, and this deformation gradually affects the whole structure through the propagation of forces from local regions, thereby altering the object's geometric features. Therefore, the appropriate introduction of physics-driven mechanism can effectively compensate for the limitations of data-driven methods in structural modeling and significantly enhance the generalization and interpretability of point cloud representations in downstream tasks such as understanding and recognition. Inspired by this, we incorporate a physics-driven mechanism into the data-driven method to learn fine-grained features in point clouds and model the structural relationship between local regions and the whole shape. Specifically, we design a dual-task encoder-decoder framework that combines the geometric modeling capability of data-driven implicit fields with physics-driven elastic deformation. Through the integration of physics-based loss functions, the framework is guided to predict localized deformation and explicitly capture the correspondence between local structural changes and whole shape variations. Experimental results show that our method outperforms existing approaches in object classification and segmentation, demonstrating its effectiveness.