Aware First, Think Less: Dynamic Boundary Self-Awareness Drives Extreme Reasoning Efficiency in Large Language Models
作者: Qiguang Chen, Dengyun Peng, Jinhao Liu, HuiKang Su, Jiannan Guan, Libo Qin, Wanxiang Che
分类: cs.CL, cs.AI
发布日期: 2025-08-15
备注: Preprint
💡 一句话要点
提出动态边界自我意识框架以提升大语言模型推理效率
🎯 匹配领域: 支柱九:具身大模型 (Embodied Foundation Models)
关键词: 大语言模型 推理效率 动态调整 自我意识 复杂任务 适应性管理 边界保持机制
📋 核心要点
- 现有方法在复杂推理任务中存在冗余,导致计算效率低下和实时应用延迟。
- 提出的DR. SAF框架通过动态评估问题复杂性,调整推理深度,从而提升推理效率。
- 实验结果显示,DR. SAF在令牌效率上提升了6.59倍,并将训练时间减少了5倍,同时准确性提高超过16%。
📝 摘要(中文)
近年来,大语言模型(LLMs)在复杂推理任务中的能力得到了显著提升,尤其是通过长链思维(CoT)方法。然而,这种方法常常导致冗余,影响计算效率,并在实时应用中造成显著延迟。为提高效率,现有方法通常依赖于人为定义的难度先验,这与LLM自我意识的难度不一致,导致效率低下。本文提出了动态推理边界自我意识框架(DR. SAF),使模型能够根据问题复杂性动态评估和调整推理深度。DR. SAF集成了三个关键组件:边界自我意识对齐、适应性奖励管理和边界保持机制。这些组件使模型能够优化推理过程,在不妥协性能的情况下平衡效率和准确性。实验结果表明,DR. SAF在总响应令牌上减少了49.27%的使用量,且准确性损失最小。
🔬 方法详解
问题定义:本文旨在解决现有大语言模型在复杂推理任务中因冗余导致的计算效率低下问题。现有方法依赖于人为定义的难度先验,无法与模型的自我意识难度相匹配,造成效率损失。
核心思路:DR. SAF框架的核心思想是通过动态评估问题复杂性,调整推理深度,以优化推理过程。该设计旨在提高模型在处理复杂任务时的效率,同时保持准确性。
技术框架:DR. SAF框架包括三个主要模块:边界自我意识对齐、适应性奖励管理和边界保持机制。边界自我意识对齐模块负责评估当前任务的复杂性,适应性奖励管理模块则根据推理深度调整奖励,边界保持机制确保推理过程的稳定性。
关键创新:DR. SAF的主要创新在于其动态调整推理深度的能力,与传统的静态推理方法相比,能够更有效地应对不同复杂度的任务。
关键设计:在DR. SAF中,关键参数设置包括动态调整的奖励函数和边界保持机制的阈值设计,这些设计确保了模型在推理过程中的灵活性和稳定性。
📊 实验亮点
实验结果显示,DR. SAF在总响应令牌上减少了49.27%,同时在令牌效率上提升了6.59倍,训练时间减少了5倍。此外,在极端训练条件下,DR. SAF的准确性提升超过16%,超越了传统基于指令的模型。
🎯 应用场景
该研究的潜在应用领域包括实时自然语言处理、智能问答系统和复杂决策支持系统。通过提升推理效率,DR. SAF能够在资源有限的环境中实现更高效的模型部署,具有重要的实际价值和未来影响。
📄 摘要(原文)
Recent advancements in large language models (LLMs) have greatly improved their capabilities on complex reasoning tasks through Long Chain-of-Thought (CoT). However, this approach often results in substantial redundancy, impairing computational efficiency and causing significant delays in real-time applications. To improve the efficiency, current methods often rely on human-defined difficulty priors, which do not align with the LLM's self-awared difficulty, leading to inefficiencies. In this paper, we introduce the Dynamic Reasoning-Boundary Self-Awareness Framework (DR. SAF), which enables models to dynamically assess and adjust their reasoning depth in response to problem complexity. DR. SAF integrates three key components: Boundary Self-Awareness Alignment, Adaptive Reward Management, and a Boundary Preservation Mechanism. These components allow models to optimize their reasoning processes, balancing efficiency and accuracy without compromising performance. Our experimental results demonstrate that DR. SAF achieves a 49.27% reduction in total response tokens with minimal loss in accuracy. The framework also delivers a 6.59x gain in token efficiency and a 5x reduction in training time, making it well-suited to resource-limited settings. During extreme training, DR. SAF can even surpass traditional instruction-based models in token efficiency with more than 16% accuracy improvement.