RBF++: Quantifying and Optimizing Reasoning Boundaries across Measurable and Unmeasurable Capabilities for Chain-of-Thought Reasoning
作者: Qiguang Chen, Libo Qin, Jinhao Liu, Yue Liao, Jiaqi Wang, Jingxuan Zhou, Wanxiang Che
分类: cs.CL, cs.AI, cs.CV
发布日期: 2025-05-19
备注: Manuscript
🔗 代码/项目: GITHUB
💡 一句话要点
提出RBF++以量化和优化链式思维推理的边界问题
🎯 匹配领域: 支柱九:具身大模型 (Embodied Foundation Models)
关键词: 链式思维推理 推理边界 多模态感知 量化分析 优化策略 大型语言模型 跨模态学习
📋 核心要点
- 现有的链式思维推理方法缺乏量化指标,难以评估和优化其能力边界,尤其是在多模态场景中。
- 本文提出推理边界框架++(RBF++),通过定义推理边界和组合法则,提供量化分析和优化指导。
- 在38个模型和13个任务的实验中,验证了RBF++的有效性,并扩展了评估基准以测量LLMs的推理边界。
📝 摘要(中文)
链式思维(CoT)推理在复杂任务中提升了大型语言模型(LLMs)的表现,但在实际应用中仍面临两个主要挑战:缺乏量化指标和可操作指南来评估和优化可测边界,以及缺乏评估不可测边界的方法。为此,本文提出了推理边界框架++(RBF++)。针对第一个挑战,定义推理边界(RB)为CoT性能的最大限制,并提出RB的组合法则,以实现量化分析和提供可操作指导。针对第二个挑战,特别是在多模态场景中,引入常数假设,将不可测RB替换为特定场景的常数。此外,提出推理边界划分机制,将不可测RB分为两个子边界,从而促进不可测领域知识和多模态感知能力的量化和优化。通过对38个模型在13个任务上的广泛实验验证了框架的可行性。
🔬 方法详解
问题定义:本文旨在解决链式思维推理中缺乏量化评估和优化边界的问题。现有方法在多模态能力评估上存在不足,无法有效处理不可测边界。
核心思路:提出推理边界框架++(RBF++),通过定义推理边界(RB)和引入组合法则,提供可操作的量化分析和优化策略,尤其针对多模态场景。
技术框架:RBF++框架主要包括两个部分:一是针对可测能力的推理边界定义与组合法则,二是针对不可测能力的常数假设与边界划分机制。
关键创新:最重要的创新在于将不可测推理边界划分为两个子边界,允许对不可测领域知识和多模态感知能力进行量化和优化,这在现有方法中尚未实现。
关键设计:在设计中,推理边界的组合法则和划分机制是关键,具体参数设置和损失函数的选择将影响模型的优化效果。
📊 实验亮点
在38个模型和13个任务的实验中,RBF++展示了其在跨模态设置下的可行性,评估了10种链式思维策略,并从两个互补的角度提供了优化和衰减的见解,显著提升了模型的推理能力。
🎯 应用场景
该研究的潜在应用领域包括自然语言处理、计算机视觉和多模态学习等。通过量化和优化推理边界,RBF++能够提升大型语言模型在复杂任务中的表现,具有重要的实际价值和未来影响。
📄 摘要(原文)
Chain-of-Thought (CoT) reasoning has proven effective in enhancing large language models (LLMs) on complex tasks, spurring research into its underlying mechanisms. However, two primary challenges remain for real-world applications: (1) the lack of quantitative metrics and actionable guidelines for evaluating and optimizing measurable boundaries of CoT capability, and (2) the absence of methods to assess boundaries of unmeasurable CoT capability, such as multimodal perception. To address these gaps, we introduce the Reasoning Boundary Framework++ (RBF++). To tackle the first challenge, we define the reasoning boundary (RB) as the maximum limit of CoT performance. We also propose a combination law for RBs, enabling quantitative analysis and offering actionable guidance across various CoT tasks. For the second challenge, particularly in multimodal scenarios, we introduce a constant assumption, which replaces unmeasurable RBs with scenario-specific constants. Additionally, we propose the reasoning boundary division mechanism, which divides unmeasurable RBs into two sub-boundaries, facilitating the quantification and optimization of both unmeasurable domain knowledge and multimodal perception capabilities. Extensive experiments involving 38 models across 13 tasks validate the feasibility of our framework in cross-modal settings. Additionally, we evaluate 10 CoT strategies, offer insights into optimization and decay from two complementary perspectives, and expand evaluation benchmarks for measuring RBs in LLM reasoning. We hope this work advances the understanding of RBs and optimization strategies in LLMs. Code and data are available at https://github.com/LightChen233/reasoning-boundary.